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   Random degenerate transitions and the master equation 

Barry H. Rosof∗ 
  

 
   We explore the consequences of making the following assumptions for 
transitions in isolated, degenerate systems, where we describe the state of the 
system by a vector in a linear vector space: changes in the state are due to a series 
of random events where each event is given by a unitary operator that is equal to 
an exponential function of a random Hermitian matrix; the principal of 
superposition applied to all possible paths gives the path taken; the statistical 
properties of the random variable are a system property. For systems where the 
elements of the random Hermitian matrix are i.i.d. and uncorrelated, we find that 
on using the central limit theorem the above leads to a unitary time evolution 
operator that is a function of time increments to the half power. On applying this 
operator to an isolated thermodynamic system we show it leads to an equation 
consisting of two terms. The time derivative of the first term is the master 
equation; the second term is shown to represent fluctuations. The transition 
probabilities in the master equation satisfy the principle of detailed balance. The 
two terms taken together describe a system that evolves to a final state in which 
the system fluctuates about equilibrium. A single set of assumptions lead to the 
master equation, the principle of detailed balance and fluctuations. 

 
PACS numbers(s): 05.30.-d, 05.40.-a, 02.50.-r, 03.65.Ta 

 
I. INTRODUCTION 

 
In this paper we present a new quantum mechanical based approach to the origin of 

the master equation. 
First we assume that a stochastic process can describe the evolution of a 

thermodynamic system. Stochastic processes have been used to model the time evolution 
of thermodynamic systems [1]. As there, we assume that changes in the state of a system 
can be described as a series of events. In the present case we assume that for a single 
event the change in the state Φ  is given by 

   Φ(i +1) = exp(− i A) Φ(i) , (1) 
where the elements aij  of the Hermitian matrix A are random variables. We call this the 
random matrix hypothesis. We are unaware of prior work where the random variables 
have been cast in the above functional form. 
 Second we assume that the nature of the random variables is a system property. In 
this paper we consider systems with particularly simple statistical properties. We assume 
that the elements of the matrix A are iid and uncorrelated.  Stochastic systems can evolve 
along many different paths. We assume that the number of events along a path is a linear 
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function of time and that the constant of proportionality between number of events and 
time is the same for all possible paths. 

We apply the principal of superposition: When a system can be in two or more states 
it can be in a state that is a linear combination of those states [2]. This requires that given 
the numerous paths the system can take, one should combine all possible outcomes. This 
prescription is indefinite for the present case. For example, two paths can arrive at a 
given state after a significantly different number of events and they can arrive at 
significantly different states after undergoing the same number of events. We make the 
simplifying assumption that we need only combine all outcomes that have undergone the 
same number of events. 
 The above assumptions are formally presented in Sec. II. 

We show in Sec. III that for an isolated M fold degenerate system the assumptions     
lead to the state of the system ( )tΨ  evolving according to 

 1/2( ) exp( i ) (0)t GtΨ = − Ψ , (2) 
where G is a Hermitian matrix.  
 We explore the consequences when Eq. (2) is used to describe changes in the state of 
a single, isolated, M fold degenerate system, such as a thermodynamic system. It leads to 
an equation consisting of two terms as shown in Sec. IV. After deriving the principle of 
detailed balance in Sec. V, we show in Sec. VI that the time derivative of the first of the 
aforementioned terms is the master equation. The second term represents fluctuations as 
covered in Sec. VII. 

Pauli was the first to derive the master equation 

 d
d
i

ij j ji i
j j

p w p w p
t
= −∑ ∑  (3) 

from standard quantum theory using a perturbation approach. Here, ip  is the occupation 
probability of the system being in state i  and ijw  is the transition probability between 

states j  and i . An outline of Pauli’s derivation along with his approximations and 
assumptions can be found in Ref. [3]. 

Since Pauli’s original paper, considerable effort has been expended on deriving the 
master equation under less restrictive conditions, particularly as part of a larger effort to 
place statistical mechanics on a firmer foundation. Many of the various directions taken 
along with their difficulties are summarized in reviews of the foundations of statistical 
mechanics by ter Haar [4], Penrose [5], Sklar [6], and Uffink [7]. 

The master equation is frequently recast in the form 

 d ( )
d
i

ij j i
j

p w p p
t
= −∑  (4) 

by utilizing the principle of detailed balance, ij jiw w= . This principle is sometimes called 
the principle of microscopic reversibility. The relation ij jiw w=  is derived separately 
from the master equation. Examples of that derivation can be found in Ref. [8, 9]. The 
derivations are based on the classical or quantum equations of motion augmented with 
assumptions. 
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The methodologies used to justify the existence of fluctuations are different again 
from those used to derive the master equation and the principle of detailed balance. 
Examples can be found in Ref. [10, 11]. 

In this paper a single set of assumptions leads to the master equation, the principle of 
detailed balance and fluctuations. 
 The penultimate section is devoted to a brief discussion of some of the assumptions.  

Fractional time evolution operators with time taken to a different fractional exponent 
than given in Eq. (2) are considered in the Appendix. 
 

II. FUNDAMENTAL ASSUMPTIONS AND RELATIONS 
 

Consider an isolated, M fold degenerate system. The state of the system Φ  is given 
by a vector in a M dimensional linear vector space. Isolated thermodynamic systems fit 
this description [Schrödinger  ]. 

ASSUMPTION 1 (DEGENERATE TRANSITIONS): The state of the system Φ  
changes due to a series of events, each event being a degenerate transition. 

ASSUMPTION 2 (RANDOM MATRIX HYPOTHESIS): For each event the 
change in the state ( )iΦ  is given by 

 ( 1) exp( i ) ( )ii A iΦ + = − Φ , (5) 

where iA  is a random MxM  Hermitian matrix, ( )iΦ  is the state of the system before 

event i and ( 1)iΦ +  is its state after the event. Further, the matrices iA  and  
Aj  

commute for all i and j. 
Because iA  is a random matrix a system can evolve along many different paths. 
The change in state along a single path j due to n consecutive events is given by 

 
1

( ) exp( i ) (0)
n

j
j i

i

n A
=

Φ = − Φ∏ . (6) 

Rearranging gives 
  ( ) exp i ( ) (0)j jn n⎡ ⎤Φ = − Ω Φ⎣ ⎦ , (7) 

where 

 
1

( )
n

j
j i

i
n A

=

Ω =∑ . (8) 

     ASSUMPTION 3 (SYSTEM PROPERTY): The statistical nature of the random 
matrix iA  and the relation between the number of events and the time is a system 
property. 
 
 MODEL SYSTEM: In this paper we only consider a system with the following 
simple statistical properties. This system is particularly important because we believe its 
dynamical behavior is a reasonable model for most real systems. 

In the following we drop the index j used to denote a specific path unless needed for 
clarity. 
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MODEL SYSTEM ASSUMPTIONS: 
1: The expected values for iA  and all its elements kla  are zero. 
2: The matrix iA  and all its elements are i.i.d. 
3: All of the elements of iA  are uncorrelated.  

A system can evolve along different paths due to the outcome of each event being 
given by a random variable. 

4: The number of events along each path is approximately proportional to the time 
and the proportionality constant is approximately the same for all paths, 
  ni ≈ kt . (9) 

In the following for convenience we initially describe the state of the system at any 
time as a function of n, the number of events, where we have dropped the subscript as for 
any time the number of events is approximately the same for all paths. 
 

ASSUMPTION 4 (PRINCIPLE OF SUPERPOSITION): For a model system the 
state of the system after n events ( )nΨ  is given by taking the sum of the outcomes 

( )j nΦ  over all possible paths, 

 ( ) ( )j
j

n nΨ = Φ∑ . (10) 

 
III. FRACTIONAL TIME EVOLUTION OPERATOR 

 
 In this section we derive the operator that gives the change in the state of a model 
system as a function of time. 

By Eq. (8) an element of ( )nΩ , ( )kl nω , is 

 
1

( ) ( )
n

kl kl
i

n a iω
=

=∑ . (11) 

Let 
 Var( )kl klaσ = . (12) 
By the central limit theorem and using model system Assumptions 1 through 3, we obtain 
the distribution 

 ( ) (0,1)dkl
kl

nn N
n

ω σ⎛ ⎞=⎜ ⎟⎝ ⎠
  n→∞ , (13) 

where (0,1)N  is the normal distribution. In practice Eq. (13) holds for relatively small 
values of n. Taking it to hold for all but the smallest values of n, and rearranging gives 
the distribution 

 1/2( ) (0,1)d
kl kln n Nω σ= , (14) 

which has an expectation value of 
 1/2( ( ))kl kln nω σ=E . (15) 
As iA  is a Hermitian matrix, the distribution of klω  equals lkω∗ , and ( )nΩ is a random 
Hermitian matrix.  
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Let Σ  be a MxM matrix whose elements are klσ  and (0, )ϒ Σ  be a MxM matrix 
whose elements are (0,1)klNσ . From the definition of ( )nΩ and Eqs. (14) and (15) we 
obtain 

 1/2( ) (0, )dn nΩ = ϒ Σ , (16) 
and 
 1/2( ( ))E n nΩ = Σ . (17) 
Combining Eqs. (7) and (16)  yields the distribution 

 1/2( ) exp( i (0, )) (0)dn nΦ = − ϒ Σ Φ , (18) 
and combining Eqns. (7) and Eq. (17) yields the expectation vector 
 ( ) 1/2exp( i ) (0)E n nΦ = − Σ Φ . (19) 

The final state for each path ( )j nΦ  is a vector in a M dimensional linear vector 

space. The matrix iA  determines the rotation of the state vector for an event and   Ω i(n)
determines the rotation along a single path after n events. The distribution of the sum 
( )nΩ represents the distribution of rotations after n events. 

We add the contribution from all possible paths: because the normal distribution is 
symmetric, the unit vectors for all paths are distributed symmetrically about the 
expectation vector ( )nΦE .  As such they can be divided into pairs, each pair consisting 
of a vector and it mirror image taken about the expectation vector.  

We add the two vectors in a pair. The components perpendicular to the expectation 
vector cancel. The components parallel to the expectation vector add to form a vector 
coincident with the expectation vector.  Doing this for all pairs, and adding the resulting 
vectors yields a vector coincident with the expectation vector. As the state of the system 
is determined by the direction and not the length of a vector, the expectation vector can 
be taken as the vector representing the state of the system.  

Using Eqs. (10) and (19) we can write for the state of the system ( )nΨ , 

 1/2( ) exp( i ) (0)n nΨ = − Σ Ψ , (20) 

where we have also used the identity (0) (0)Ψ = Φ . 
Using the relation between events and time [Eq. (9)] we obtain  

 1/2( ) exp( i ) (0)t GtΨ = − Ψ , (21) 
where G is a Hermitian matrix proportional to Σ  and scaled so as to make Eq. (21) an 
equality. This can be rewritten as  
 ( ) ( ,0) (0)t V tΨ = Ψ  (22) 
where 
 1/2

0exp( i ( ) )V G t t= − − . (23) 
We call V the fractional time evolution operator. As covered below, it leads to the 

principle of detailed balance, the master equation, and fluctuations. 
 

IV. PROBABILITY-EVOLUTION EQUATION 
 



 6    

A. Expansion coefficients 
 

Consider an isolated system. For present purposes, the elements making up the 
system can be gas molecules, atoms in a crystal, modes of vibration, or any other 
collection of objects or elements that are normally the subject of thermodynamic analysis. 
For clarity, note we are considering only a single system and not an ensemble. 

The allowed energies for an isolated system are quantized. The state ket Ψ  of a 

single system whose energy is E can be expanded in terms of energy eigenkets i  to give  

 i
i
C iΨ =∑                    ( 1,i M= ), (24) 

where M is the degree of degeneracy and iC i= Ψ  is an expansion coefficient. 

Eigenkets i  that have eigenvalues other than E are not included in Eq. (24) as the values 
of their expansion coefficients iC  are zero. The system need not be at equilibrium. 

 Because of degeneracy, the expansion can be made using any one of an infinite 
number of sets of orthogonal energy eigenkets. In Sec. VI C we show that there is a 
unique set of kets that must be used as base kets in order to give the proper value for the 
equilibrium entropy. The base set must also be unique in order to give unique values for 
the time evolution of the probabilities that are defined below. 

In the following all summations are taken from one to M for all indices unless 
otherwise indicated. 

We will be interested in the following primarily with how the probabilities ip  
change with time where 

 i i ip C C∗= , (25) 
and 

 1ip =∑ . (26) 
 

B. Rate of change of the state of the system 
 

The expansion coefficients evolve according to 
 0( ) ( )i ij j

j
C t V C t=∑ . (27) 

Substituting Eq. (27) into Eq. (25) yields 
 m f( ) ( ) ( )i i ip t p t p t= + , (28) 

where 
 m

0 0 0( ) ( , ) ( , ) ( )i ij ij j
j

p t V t t V t t p t∗=∑ , (29) 

and 
 f

0 0 0 0( ) ( , ) ( , ) ( ) ( )i ik ij k j
j k
k j

p t V t t V t t C t C t∗ ∗

≠

=∑∑ . (30) 

[Eqs. (28) through (30) are given by Tolman  [12] with V replaced by the standard time 
evolution operator.] 
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We call Eq. (28) the probability-evolution equation. Its first term, given by Eq. (29), 
leads to the master equation as we show in Sec. VI. We examine in Sec. VII its second 
term, given by Eq. (30), and show that it represents fluctuations. 
 

V. TRANSITION PROBABILITIES AND PRINCIPLE OF 
DETAILED BALANCE 

 
In this section, we examine properties of V and develop relations we will need later. 

One of those relations is the principle of detailed balance. 
Starting with Eq. (23), expanding the exponential, retaining terms through the second 

order (terms in 1/2tΔ  are first order), setting  
 2F G=  (31) 

and 
 0( )t t tΔ = − , (32) 

we obtain 

 1/21 i
2
FV G t t= − Δ − Δ , (33) 

and 

 1/2i
2
ij

ij ij ij

F
V G t tδ= − Δ − Δ . (34) 

Multiplying ijV  by its complex conjugate and retaining only terms through second order 
(first order terms cancel) gives 

 ( ) 2ij ij ij ij ij ij ij ijV V G G t F F tδ δ∗ ∗ ∗⎡ ⎤= + Δ − + Δ⎣ ⎦ . (35) 
Defining 

 ( ) / 2ij ij ij ij ij ijW G G F Fδ∗ ∗⎡ ⎤= − +⎣ ⎦ (36) 
permits us to rewrite Eq. (35) as 

 ij ij ij ijV V W tδ∗ = + Δ . (37) 

From the definition given in Eq. (31), ij ik kj
k

F G G=∑ . Taking its complex conjugate 

and noting that G is Hermitian, we obtain ji ijF F∗ = . Using Eq. (36) and applying the 
Hermitian property of G again gives 

 ij jiW W= , (38) 
and 0ijW ≥  for i j≠ . 

Because V is unitary 
 kj ij ki

j
V V δ∗ =∑ . (39) 

Substituting Eq. (37) and rearranging yields for k i=  
 

,
ii ij

j j i
W W

≠

= −∑ . (40) 

We need to include the second order term ( 2)ijF tΔ  in Eq. (34) for otherwise we 
would have had a contradiction. Without the second order term in Eq. (36) we would 
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have had ii ii iiW G G∗= , a positive number. On the other hand, iiW  would be negative by Eq. 
(40) because all the ijW ’s on the right-hand side are greater than or equal to zero. This 
problem is eliminated by including the second order term in Eq. (34). 

Unitary operators have the property that † 1AA = . Direct substitution of †G G=  into 
Eq. (31) gives †F F= . Using Eq. (33) yields on retaining only terms through second 
order (first order terms cancel) 

 † †1V V G G t F t= + Δ − Δ . (41) 
On using the Hermitian properties of G, the right-hand side of Eq. (41) reduces to unity 
even when tΔ  is not infinitesimal. Eq. (41) is an exact relation. Had we carried through 
higher order terms in tΔ  when performing this derivation we would have concluded that 
the higher order terms must sum to zero. 

The relation ij jiW W=  [Eq. (38)] is the principle of detailed balance. (We will see 
this more clearly when we derive the master equation in Sec. VI A.) It flows here from 
the assumptions and the requirement that V is unitary and G Hermitian. 
 

VI. MASTER EQUATION AND THE ENTROPY 
 

A. Master equation 
 

On substituting Eq. (37) into Eq. (29), taking the limit as set out below, and as any 
time can be taken as 0t , we obtain the master equation 

 ( )
m

m m
0

0

d 1 ( ) ( )limd
i

i i ij j
t j

p p t p t W p
t tΔ →

= − =
Δ ∑ . (42) 

Using Eq. (40), Eq. (42) becomes on rearranging  

 ( )
md
d
i

ij j i
j

p W p p
t

= −∑ ,  (43) 

where we have dropped the requirement that j i≠  as ( ) 0ii i iW p p− = . Below we use the 
term “master equation” to refer to Eq. (43). 
 

B. Equilibrium 
 

We take 

 
md 0
d
ip
t

=  (44) 

as the definition of equilibrium. Using Eq. (43), Eq. (44) has the obvious solution i jp p=
for all i and j; all pi’s are thus equal at equilibrium. 

As all the pi’s are equal at equilibrium, are M in number, and sum to unity, 

 1
ip M
= . (45) 

 
C. Entropy and choice of base kets 
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We take 
 lni iS k p p= − ∑  (46) 

 as the definition of the entropy. 
At equilibrium the entropy is given by 
 lnS k M= , (47) 

obtained by substituting Eq. (45) into Eq. (46). Schrödinger [13] gives this same equation 
for the entropy as a function of the degree of degeneracy M. He pointed out that the 
degree of degeneracy is the number of different configurations over which the energy E 
can be distributed within the system and that Eq. (47) thus corresponds to the usual 
definition of the entropy. 

As mentioned in Sec. IV A, any one of an infinite number of base ket sets can be 
used when expanding the state ket Ψ . If we describe the state ket in terms of two 
different sets of base kets we would obtain two different sets of values for the 
probabilities ip  and thus the entropy. The rate of change of ip , given by Eq. (43), would 
also be a function of the choice of base kets; no change would occur by Eq. (43), for 
example, if one chose a set of base kets such that all the ip ’s were equal. The value of 
the entropy and the rate of change in the state of the system must be independent of the 
choice of base kets. We conclude that there is only one set of base kets that is appropriate 
to use; it is the one that gives the right value for the entropy at equilibrium.  At this point, 
though we know such a set of base kets exists, we do not have a prescription for how to 
choose it in advance. 
 

D. Evolution of the entropy 
 

Eq. (43) requires that the difference between pi and pj decreases with time. Following 
the usual treatment, if one takes the derivative of Eq. (46) with respect to pi, subject to the 
constraint that probability is preserved, one finds that the entropy increases as i jp p−  
decreases and that the system evolves to the equilibrium state. At equilibrium Eq. (45) is 
satisfied and the system has the maximum possible entropy. Once equilibrium is reached 
the probabilities pi and thus the entropy do not change with time; the master equation 
taken alone predicts a fluctuation free final state. 
 

VII. FLUCTUATIONS 
 

In this section, we examine the properties and consequences of the fluctuation term 
f ( )ip t  given by Eq. (30). 

 
A. Fractional differential form 

 
Substituting Eq.(34) into Eq. (30) and dropping higher order terms yields 
 f 1/2

0 0 0( , ) i( ) ( ) ( )i ij ik ik ij k j
j k
k j

p t t G G C t C t tδ δ∗ ∗

≠

= − Δ∑∑ . (48) 

By grouping terms in Eq. (48) into pairs, it can be rewritten as 
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 f 1/2(i )i il
l
l i

p t B
≠

= Δ ∑ , (49) 

where 
 il il l i il i lB G C C G C C∗ ∗ ∗= − . (50) 
Following Zaslavsky [14, 15], or Kolwankar and Gangal [16] in their derivations of 

the fractional Fokker-Plank-Kolmogorov equation, we can write 

 
1/2

f f f
0 01/2 1/20

d 1( ) lim ( ) ( )
d i i it

p t p t p t
t tΔ →

⎡ ⎤= −⎣ ⎦Δ
. (51) 

Using Eq. (49), the condition that f
0( ) 0ip t = , and as any time can be taken as 0t , we 

obtain the fractional differential equation 

 
1/2

f
1/2

d ( ) i
d i il

l
l i

p t B
t

≠

= ∑ . (52) 

Fractional differential equations governing the time evolution of a variety of physical 
phenomena are known in physics Ref. [17, 18]. We are unaware of any equations exactly 
like Eq. (52). However, in general, fractional differential equations describe processes 
that are non-linear and non-differentiable. They are associated with fractals and 
continuous time random walks. The fractional differential form of Eq. (52) suggests that 
f
ip  represents processes that have the characteristics associated with fluctuations. We 

pursue this further below. 
 

B. Kinetic equations and transition probabilities 
 

There is a significant difference between Eq. (52) and kinetic type equations.  We 
illustrate this difference by comparing it to the master equation. 

Using Eq. (50), we can rewrite Eq. (52) as 

 
1/2

f
1/2

d i ( )
d i il l i il i l

l
l i

p G C C G C C
t

∗ ∗ ∗

≠

= −∑ . (53) 

The master equation, Eq.(43), can be rewritten using Eq. (25) as 

 ( )
md
d
i

ij j j i i
j

p W C C C C
t

∗ ∗= −∑ . (54) 

We first state the obvious. In Eq. (54), the time derivative of the probability is equal 
to a linear function of probabilities each given by a product of the form *

j jC C where the 
indices in each pair are the same. In Eq. (53), on the other hand, the fractional time 
derivative is equal to a linear function of *

l iC C ’s, where the indices in each pair are 
different. The terms on the right hand side of Eq. (53), representing the state of the 
system, are not probabilities; they are probabilities in Eq. (54). 

In kinetic type equations, such as the diffusion and master equations, changes in the 
variable representing the state of the system, such as ip , are functions of variables of the 
same type. That is not so in the case of f

ip . 
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The Gil’s are not transition probabilities. They are “transition amplitudes.” We 
cannot conceptually think of i ilB , given by Eq. (52), in terms of incoming and outgoing 
probability fluxes, in the same way that we can for the ( )ij j iW p p−  terms in the master 
equation. 
 

C. Identification with fluctuations 
 

We can write 
 [ ]i 2 sin( ) cos( )il i l il i l il i lB c c f gφ φ φ φ= − − + − , (55) 

where we have substituted 
 exp(i )i i iC c φ=  (56) 

and 
 iil il ilG f g= +  (57) 

into Eq. (50). Using the above, Eq. (52) becomes 

 [ ]
1/2

f
1/2

d i 2 sin( ) cos( )
d i i l il i l il i l

l
l i

p c c f g
t

φ φ φ φ
≠

= − − + −∑ . (58) 

The processes described by Eq. (58) will cause a system at equilibrium to move 
away from equilibrium. Equilibrium is used here in the sense of that the system satisfies 
Eq. (45). For this to occur at least some of the terms 

[ ]2 sin( ) cos( )i l il i l il i lc c f gφ φ φ φ− − + −  given in Eq. (58) must be nonzero. At equilibrium, 
the probabilities given by Eq. (45) and hence the moduli of the iC ’s, and thus the ic ’s, 
are all equal and nonzero.  Because the ilG ’s are constants, the ilf ’s and ilg ’s are 
constants (most but not all may be zero, as some must be nonzero for the system to attain 
equilibrium). Irrespective of the value of ( )i lφ φ− , the term in brackets in Eq. (58) will be 
non zero as long as either ilf  or ilg  or both are nonzero. (There is an exception, when
tan( )i l il ilg fϕ ϕ− = , the term in brackets is zero. This is unlikely. Further, ( )i lφ φ− will 
change with time due to the operation of V on Ψ .) As at least some of the terms in the 
sum in Eq. (58) are nonzero, ip  and all of the other probabilities will spontaneously 
change and the system will move away from equilibrium. 

Any movement away from equilibrium will be counteracted by the processes 
described by the master equation, which bring the system back towards equilibrium. The 
rate at which the system is brought back towards equilibrium increases with the deviation 
from equilibrium. The net result is that the system will fluctuate about equilibrium. 

The behavior represented by Eq. (58) is quite different from that given by kinetic 
equations. Kinetic equations take a system towards equilibrium; the fluctuation term f

ip  
represents processes that take a system away from equilibrium. 

We conclude that f
ip  causes fluctuations. 

Though we have only considered the properties of f
ip  in the vicinity of the 

equilibrium state, we would expect that it also would cause fluctuations about the path a 
system takes towards its final state. 
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D. Final state 

 
The picture presented above is that of an isolated system evolving to a final state 

wherein it fluctuates about equilibrium. The final state is thus one of constant motion 
where the system occupies a region centered on the equilibrium condition defined by Eq. 
(45). In this picture, the entropy of the system at any one time is close to, but rarely if 
ever attains, the value given by Eq. (47). This picture is in accord with how we view, say, 
the behavior of molecules confined to a box or more generally the behavior of any 
thermodynamic system.  

The probability-evolution equation, Eq. (28), thus predicts the existence of a more 
realistic final state than the one predicted by the master equation alone. 
 

VIII. COMMENTS ON RANDOMNESS ASSUMPTION 
 

An approach to non-equilibrium statistical mechanics is to start with the microscopic 
equations of motion, make a randomness assumption and from this derive the master 
equation, Ref. [19, 20]. Though making this this type of assumption has a long and 
distinguished pedigree going back to Boltzmann, it is not justified by the equations of 
motion, either classical or quantum. We believe that there is a physical basis for making 
this assumption [21].  

In Ref. [21] we used a conceptual experiment to show that under certain 
circumstances time reversal symmetry does not hold. This is ascribed to a system whose 
state is made up of multiple components randomly taking on one of those component 
states due to an interaction. The time evolution of this event can be represented by the 
change in the state of the system Φ  being given by an equation of the form 
 Φi+1 = RU Φi ,  ( 59) 
where RU  is a random unitary matrix. That is under certain circumstances randomness is 
included in the basic quantum equations of motion. 
 In this paper we take Eq. ( 59) as our starting point and assume that it has the 
functional form given by Eq. (1)and in Sec. II make further assumptions as to its 
statistical properties. 

 
IX. CONCLUDING REMARKS 

 
We investigated the consequences of describing changes in isolated thermodynamic 

systems as a series of random events and then using the principle of superposition taking 
the change in the state of the system after many events as the sum of the outcomes over 
all possible paths. When making particularly simple assumptions as to the statistical 
nature of the random events, we found that the system evolves according to the master 
equation, upon which are superimposed fluctuations. In addition, the transition 
probabilities in the master equation satisfy the principle of detailed balance. We showed 
that the final state is one where the system fluctuates about equilibrium; this is a more 
realistic description of how thermodynamic systems behave than one based on the master 
equation alone. The sum over paths assumption was needed to ensure that the second law 
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of thermodynamics is not violated by a system whose evolution is governed by a series of 
random events. Our approach presents a level of compactness and parsimony not found in 
other treatments of this subject. There separate theories are used to develop the master 
equation, the principle of detailed balance and fluctuations, each with its own 
methodology, assumptions and approximations. 
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APPENDIX 
 

A simple generalization increases the range of dynamic behavior that can be 
described by fractional time evolution operators. We assume there exists a fractional time 
evolution operator of the more general form 
 ( )/20 0( , ) exp i ( )V t t G t t β= − − , (A1) 
where β  can have a value other than unity. The derivations given above remain 
unchanged other than as required by replacing 1/2 with β/2. The probability evolution 
equation [Eq.(28)] remains unchanged. We obtain a fractional master equation, 

 ( )d
d

m
i

ij j i
j

p W p p
t

β

β = −∑  (A2) 

and the principle of detailed balance, ij jiW W= . The fractional master equation leads to 
the usual equilibrium entropy, lnS k M= . Finally the fractional differential equations 
given in Sec. VII that are used to describe fluctuations are modified with 

 
/2 1/2

/2 1/2

d d replacing 
d dt t

β

β . 

Eq. (53) becomes, for example, 

 
/2

f
/2

d i ( )
d i il l i il i l

l
l i

p G C C G C C
t

β

β
∗ ∗ ∗

≠

= −∑ . (A3) 

A simplification occurs when the G operator and all the expansion coefficients iC  
are real; then the fluctuation terms disappear, as can be seen on examining Eq. (A3). In 
this case some of the equations, such as Eq. (36), have a particularly simple form 
allowing one to calculate ijG if ijW  is known. 

Examples of systems whose dynamics are described by the fractional master 
equation and the related fractional Fokker-Plank equation can be found in Ref. [15, 22, 
23]. As shown in the references, the fractional master equation and related equations lead 
to different dynamics than the conventional master equation. Care must be exercised in 
drawing conclusions from the similarity between Eq. (A2) and the functionally similar 



 14    

equations found in the literature, particularly for thermodynamic systems; the method 
used to describe the state of a system there can differ from that used here. 
 

REFERENCES 
[1] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, third ed. 
(Elsevier, Amsterdam, 2007). 
[2] P. A. M. Dirac, The Principles of Quantum Mechanics, fourth ed. (Oxford University 
Press, 1958), pp. 10-17. 
[3] L. van Hove, in Fundamental Problems in Statistical Mechanics, edited by E. D. G. 
Cohen (North-Holland, Amsterdam, 1962), pp. 157-172. 
[4] D. ter Haar, Rev. Mod. Phys. 27, 289 (1955). 
[5] O. Penrose,  Rep. Prog. Phys. 42, 1937 (1979). 
[6] L. Sklar, Physics and Chance (Cambridge University Press, 1993). 
[7] J. Uffink, in Philosophy of Physics, edited by J. Butterfiels, and J. Earman (North-
Holland, Amsterdam, 2007), p. 923. 
[8] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, 
Amsterdam, 1962), pp. 82, 83, 92-100. 
[9] C. Kittel,  Elementary Statistical Physics (Wiley, New York, 1958), pp. 170-171. 
[10] L. D. Landau and E. M. Lifshitz, Statistical Physics, second ed. (Addison-Wesley, 
Reading, 1969), pp. 343-355. 
[11] H. Wergeland, in Fundamental Problems in Statistical Mechanics, edited by E. D. 
G. Cohen (North-Holland, Amsterdam, 1962), pp. 33-37. 
[12] R. C. Tolman, The Principles of Statistical Mechanics (Oxford University Press, 
1938) p. 408. 
[13] E. Schrödinger, Statistical Thermodynamics, second ed. (Cambridge University 
Press, 1964), pp. 90, 91. 
[14] G. M. Zaslavsky, Physica D 76, 110 (1994). 
[15] G. M. Zaslavsky, Phys. Rep. 371, 461 (2002). 
[16] K. M. Kolwankar and A. D. Gangal, Phys. Rev. Let. 80, 214 (1998). 
[17] R. Hilfer, edited by, Applications of Fractional Calculus in Physics (World 
Scientific, Singapore, 2000). 
[18] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators (Springer-
Verlag, New York, 2003). 
[19] N. G. van Kampen, in, Fundamental Problems in Statistical Mechanics, edited by E. 
D. G. Cohen (North-Holland, Amsterdam, 1962), pp. 173-201. 
[20] J. P. Dougherty, Phil. Trans. A 346, 259 (1994). 
[21] B. H. Rosof, “Violation of Time Reversal Symmetry,” www.rosof.com. 
[22] R. Hilfer, and L. Anton, Phys. Rev. E 51, R848 (1995). 
[23] R. Metzler, E. Batkai, and J. Klafter, Europhys. Lett. 46, 431 (1999). 


